Continuous Process for Low-Cost, High-Quality YSZ Powder

Scott L. Swartz, Ph.D. NexTech Materials, Ltd.

SECA Core Technology Workshop Boston, Massachusetts May 13, 2004

Contact Information

(614) 842-6606 swartz@nextechmaterials.com www.nextechmaterials.com

Project Details and Team

- ☐ U.S. Department of Energy (SECA)
 - DOE Contract Number: DE-FC26-02NT41575
 - Project Monitor: Shawna Toth
 - Phase I: 10/1/2002 through 9/30/2003
 - Phase II: 10/1/2003 through 9/30/2005
- ☐ State of Ohio (Third Frontier Program)
 - Building the Domestic Infrastructure for Solid Oxide Fuel Cells
 - ODOD Contract Number: TECH 03-035
- **■** NexTech's Team
 - Principal Investigator: Scott Swartz
 - Lead Engineer: Michael Beachy
 - Scientific Support: Matt Seabaugh
 - Technical Support: NexTech's Fuel Cell Group

Continuous Process for Low-Cost, High-Quality YSZ Powder

Technical Issues being Addressed

- Low-cost scalable powder synthesis/production processes. Lower sintering temperatures. Effects of dopants and processing methods on conductivity and mechanical properties. Long-term degradation of ionic conductivity of zirconia-based electrolytes. Tailoring of the YSZ electrolyte powder for different SOFC fabrication processes.
- **□** Batch-to-batch reproducibility.

R&D Objectives

Development of a low-cost synthesis process for YSZ electrolyte powder tailored for SOFC fabrication processes

Process Development Goals

- Homogeneous precipitation
- Utilization of low-cost precursors
- Continuous where possible
- > Aqueous
- > Agile

Powder Quality Metrics

- ➤ Surface area: ~10 m²/gram
- ➤ Average particle size: <0.5 microns
- Sinterability: $\rho \sim 98\%$ theoretical at $T_S < 1300$ °C
- Ionic conductivity: $\sigma > 0.05$ S/cm at 800°C

Continuous Precipitation

Standard Precipitation

pH varies continuously during process

Homogeneous Precipitation

pH remains constant throughout process

Powder Processing Approach

Powder Evaluation Protocol

- **□** Powder Characterization
 - Particle Size Distribution (centrifugal analysis)
 - Surface Area (multi-point BET)
 - Chemical Analysis (ICP)
- **□** Sintering Performance Studies
 - Samples: pressed pellets or tape-cast substrates
 - Temperature range: 1100 to 1400°C
 - Density measurements by Archimedes method
- ☐ Characterization of Sintered YSZ Ceramics
 - Ionic conductivity (four-point method)
 - Long-term conductivity testing
 - Mechanical properties
 - Microstructural analyses

Process Development Challenges

Assuring "apples to apples" comparisons. ☐ Drying and milling processes are more efficient at larger production scales. ☐ Labor-intensive process at current scale of production. Complex relationships between precipitation variables on downstream processes. Difficulty in achieving absolute control of surface area and particle size simultaneously. □ Lack of accelerated tests for long-term stability.

Results to date (including Phase I)

- ☐ Established homogeneous precipitation process for synthesis of YSZ powders.
- ☐ Established calcination and milling methods to meet surface area and particle size targets.
- ☐ Achieved state-of-the-art performance levels, relative to commercially available YSZ powders:
 - Improved low-temperature sinterability (at same surface area)
 - Achieved identical ionic conductivity values
- ☐ Demonstrated potential for achieving manufacturing cost of less than \$25/kg target.
- ☐ Identified cost drivers for process.

Non-Optimized Process

Optimized Process

Effect of Milling Methods on Sintering Performance

Effect of Dopants on Sintering Performance

Effect of Al₂O₃ Dopant Content on Sintering Performance

Effect of Fabrication Method on Sintering Performance

Ionic Conductivity Measurements

Aging of Ionic Conductivity

Aging of Ionic Conductivity

Manufacturing Cost Estimate

A Basis of Calculations:

- ➤ Plant size: 500 MT/year
- > Fixed capital investment: \$11.2 M
- > Cost per kilogram of YSZ: \$23.56

Applicability to SOFC Commercialization

YSZ powder must be tailored for different manufacturing processes used for anodes and electrolyte layers.

SECA Industry Team	Electrolyte Fabrication	Anode Fabrication
Delphi/Battelle	Tape Casting	Tape Casting
GE	Tape Calendaring	Tape Calendaring
Cummins/SOFCo	Tape Casting	Screen Printing
SWPC	Plasma-Spray	Plasma Spray
Fuel Cell Energy	Screen Printing	Tape Casting
Accumentrics	Dip Coating	Extrusion

Applicability (continued)

Agile processing will allow tailoring to requirements of SOFC fabrication methods and different developers.

- **Tape Casting Methods:** Tight control of particle size distribution is important; relatively low surface areas needed for high green density.
- **Co-Sintering Processes:** Lower sintering temperatures are desired; control of sintering shrinkage rates is essential.
- **Colloidal Deposition:** Dispersion chemistry is critical; higher surface areas can be tolerated; tailored particle size distributions are beneficial.
- **Plasma-Spray Methods:** Large particle size and spherical powder morphology are required for optimum flow characteristics.
- **Extrusion:** Lower surface areas needed for dimensional control and green strength; particle size requirements vary by developer.

Batch-to-batch reproducibility is essential for all processes!

Phase II Work Plan (Year 1)

- **□** Survey of SECA Industry Teams
- ☐ Process Development and Scale-Up
 - Process refinements (especially washing and drying steps)
 - Chemical analyses through all processing steps
 - Scale-up to 10-20 kg batch sizes
 - Evaluation of batch-to-batch reproducibility
 - Electrical and mechanical property testing
- **□** Validation of Alumina Doping Strategies
 - Evaluation of dopant incorporation methods
 - Chemical analyses
 - Comprehensive microstructural analyses
 - Electrical and mechanical property testing
 - Long-term testing

Phase II Work Plan (Year 2)

- ☐ Demonstration of Process Reproducibility
- **□** Demonstrations in SOFC Fabrication Processes
 - Preparation of composite (NiO/YSZ) anode powders
 - Tape casting of anode substrates
 - Co-sintering of anode-supported cells
 - Screen-printed anode coatings
 - Special Requests
- **☐** Production of Evaluation Samples
 - YSZ electrolyte powder
 - NiO/YSZ anode powder
 - Fabricated components
- **☐** Manufacturing Cost Analyses

Acknowledgments

